Design and investigation of TiO2 –SiO2 thin films on AISI 316L stainless steel for tribological properties and corrosion protection

author

  • Behrooz Shayegh Department of Engineering, Shahrekord University, Shahrekord, Iran.
Abstract:

The TiO2–SiO2 thin films were deposited on AISI 316L stainless steel via sol-gel method. Then, the effect of the added amount of SiO2 on the structure, morphology and mechanical properties of the films and corrosion behavior of AISI 316L stainless steel substrate were investigated. So, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, depth-sensing indentation technique supporting micro-scratch mode and potentiodynamic polarization test were used. It was observed that the appropriate amount SiO2 addition into TiO2 film not only decreased the particle size of TiO2–SiO2 crystal but also could help to improve the surface quality. The mechanical and tribological properties of the films were found to be improved in the range of 10–15%mol SiO2 addition compared with the pure TiO2. The minimum root mean square value was obtained from the film with a silica content of 10%mol. In addition, the corrosion behavior of AISI 316L stainless steel was improved by adding 15%mol SiO2. Under UV illumination conditions, photo-generated electrons accumulated in this film could perfectly protect the substrate photocathodically.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Micro abrasion-corrosion of AISI 316L stainless steel

In this study, the synergistic effects of abrasion and corrosion on AISI 316L stainless steel have been investigated using a micro-abrasion test rig. A series of results from abrasioncorrosion tests conducted using the micro-abrasion rig are presented. AISI 316L stainless steel has been studied under both pure abrasion and abrasion-corrosion conditions simulated by either distilled water or 3.5...

full text

Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films

0010-938X/$ see front matter 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.corsci.2013.07.045 ⇑ Corresponding author. Address: Faculty of Mechanical Engineering and Naval Architecture, Departmet of Materials, Ivana Lučića 5, 10000 Zagreb, Croatia. Tel.: +385 1 616 8313; fax: +385 1 615 7126. E-mail address: [email protected] (L. Ćurković). Lidija Ćurković a,⇑, Helena ...

full text

Alumina nanostructured coating for corrosion protection of 316L stainless steel

Nanostructured alumina thin films were coated on stainless steel by Sol-Gel dip coating method. In order to prevent crack formation, Al2O3 films were kept in a solvent bath immediately after coating to reduce the rate of drying. Effects of calcination temperature and withdrawal speed on structural properties were analyzed using XRD and SEM. Topography and thickness of coat...

full text

Alumina nanostructured coating for corrosion protection of 316L stainless steel

Nanostructured alumina thin films were coated on stainless steel by Sol-Gel dip coating method. In order to prevent crack formation, Al2O3 films were kept in a solvent bath immediately after coating to reduce the rate of drying. Effects of calcination temperature and withdrawal speed on structural properties were analyzed using XRD and SEM. Topography and thickness of coat...

full text

Characterization of SiO2-TiO2 Coatings on 316l Stainless Steel Substrates

This paper reports nano-structured SiO2-TiO2 coatings using the sol-gel technique on 316L steel substrates. Nanoindentation, surface analysis and corrosion resistance tests were performed on different samples. The nanomechanical tests allowed to compare uncoated steel samples (Eavg = 193.24 GPa and mean hardness of 2.63 GPa and coated steel samples (Eavg = 287.38 GPa and mean hardness of 5.74 G...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 3

pages  13- 24

publication date 2015-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023